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We develop a formalism for computing sums over random surfaces which arise in all problems containing gauge invariance 
(like QCD, three-dimensional Ising model etc.). These sums are reduced to the exactly solvable quantum theory of the two- 
dimensional Liouville lagrangian. At D = 26 the string dynamics is that of harmonic oscillators as was predicted earlier by 
dual theorists, otherwise it is described by the nonlinear integrable theory. 

There are methods and formulae in science, which 
serve as master-keys to many apparently different prob- 
lems. The resources o f  such things have to be refilled 
from time to time. In my opinion at the present time 
we have to develop an art of  handling sums over ran- 
dom surfaces. These sums replace the old-fashioned 
(and extremely useful) sums over random paths. The 
replacement is necessary, because today gau~e invar- 
iance plays the central role in physics. Elementary ex- 
citations in gauge theories are formed by the flux 
lines (closed in the absence of  charges) and the time 
development of  these lines forms the world surfaces. 
All transition amplitude are given by the sums over all 
possible surfaces with fixed boundary. Now, what are 
the advantages and applications of  that representation? 

The general picture has been envisaged as follows 
[1 ] .  We have, presumably, a theory of  free strings 
which can move through each other without any inter- 
action. These strings do not correspond to the general 
gauge theory. However, the interaction among the 
gauge strings is such that it does not destroy but only 
modifies conserved currents of  the free strings. This 
picture is an analogue of  what happens in 2d-integrable 
systems (like sine-Gordon) with a change of  the word 
"particle" for the word "string". 

The analogy goes even further in the case of  the Z 2- 
gauge group (Ising model). In this case, as was stated in 
ref. [1] and developed in ref. [2] ,  it was possible to 
introduce some sort of  fermionic string which remains 
flee,just as in the 2d-Ising model one finds free fermion 

representation. 
All these considerations had one essential flaw: it 

was not known what was exactly meant by the "free 
string". It has been clear, that just as the amplitudes o f  
free particles are defined as 

G ( x , x ' )  = ~ exp[ -mL(Pxx , ) ]  , (1) 
(paths) 

where Pxx' is a path connecting points x and x '  and L 
is the length of  the path .... one should define: 

G(C) = ~ ]  exp [ -m2A (Sc)] , (2) 
(Sc) 

here C is some loop, S C is a surface bounded by the 
loop, A (Sc)  is the area of  this surface. 

Both formulas (1) and (2) are symbolic, but while 
in the case of  (1) we know how to decipher and com- 
pute it, in the case of  (2) such knowledge is not avail- 
able. It is the purpose of  the present work to over- 
come, at least partly, this drawback. This task is made 
even more tempting by the arguments given in ref. [2] 
which show that the fermionic analogue of  (2) is di- 
rectly connected with the physics of  phase transitions. 
Another possible application would be multicolored 
QCD in which gauge strings also might become free, 
with the possible addition of  fermionic degrees of  
freedom [3]. 

We start our analyses from the purely bosonic case, 
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and work in euclidean space. Let us describe our sur- 
face by the parametrization ×u(~l,  ~2)- First we need 
several facts concerning the classical geometry of  sur- 
faces. These facts are not new (some of them belong to 
the XIXth century) but it is good for our purpose to 
have their collection at hand (see also ref. [4] ). The 
area spanned by the surface is given by 

A = f d Z ~ ( d e t  Ilhab ]1)1/2 , hab = ~aXu3bXp . (3) 

The integral goes over a fixed region in the ~-plane (say, 
a unit circle): ~a = ~a(s). It is invariant under: 

x , (~ )  ~ xu(f(~)) • (4) 

The minimal area is given by 

8A = -~ habShab = O, ~hab = O(a x tLOb)6Xtt , 

or, after integrating by parts: 

Oa(X/~habObxU) = 0 , hab = OaXpObX~z. (5) 

The same equations can be obtained from another 
functional: 

w = l  f x/ggab3aXu~bX~ d2~ , (6) 

which is supposed to be minimized both in xu(~) and 
gab (~) "Indeed, the first variation gives the Laplace 
equation 

0 a (x/~gabObxp) = 0 

and the gab -variation forces the ene rgy -momen tum 
tensor to be zero: 

1 _ c d ~  . ~ X - 0 Tab =OaXu3bXu--ggab ,r, °eXu a u -  • (7) 

From (7) follows that 

gab = ~aX#ObXta • 

Another fact which we need is that it is possible to 
change coordinates ~ ~ f ( ~ )  in such a way that the 
metric becomes conformally euclidean. The function 
f = f l  + if2 is defined by the equation 

Oa f = ieaa,X/~ ga'b Obf . (8) 

The solution of  (8) can be chosen in such a way that 
it maps a unit disc onto itself: 

f(~ (s)) = ~ (a (s)) (9) 

(here a(S) is a reparameterisation of the boundary, 
uniquely connected with the original gab (~))' The 
transformed metric is of  the form P(~)~ab; P(~) 
-- [d[/d~ 12. If we minimize (6)wi th  respect to xu(~) 
with the boundary condition 

xu(~(s)) = xu(s), (10) 

we get the relations 

Amin[X(S)] = min min W[x(~), {gab(G)] 
(gab} {x.(o} 

= min Wmin[X.(ot(S)),  6ab ] . (11) 
(~(s)} 

The minimal area Ami n [x(s)] satisfies the equation 

[6Amin/6Xu(S)] 2 = (dxu/ds)2 , (12) 

(dxu/ds) 6A min/SX , (S) = O. 

Up to now we dealt with minimal "classical" sur- 
faces. Let us proceed to the quantum theory. The most 
immediate problem is to define the proper measure for 
the summation over continuous surfaces. This measure 
must count all surfaces of  a given area with the same 
weight. That means that if we have transformation g~ 
which maps a surface S c (C is a boundary of  it) onto an- 
other surface S~  in such a way that A (S~) = A (Sc) 
we must have for any functional ¢)[Sc] 

fdu(S) ~(Sc) = fdu(S) ~(SO" 03) 

Condition (13) leads to the following expression for 
the measure (we are not giving the derivation here): 

f d u ( S )  ~(S) 

= f [ D g a b ( ~ ) ] e x p ( - X f x / g d 2 ~ )  

X fDx(~)[exp( - l fDX/ggabbaxuObX,d20]  

X ¢[x(~)] , (14) 

where X is an arbitrary parameter,  D is a unit disc in 
the ~-plane, [Dgab] is an integration measure over all 
possible metrics, the same as in general relativity, with 
some gauge condition applied (the gauge will be spe- 
cified later). This expression may be regarded as a 
quantum counterpart  o f  the action (6). The role of  
gab in the classical limit is that of  a Lagrange multiplier, 
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ensuring us that Tab ; 0. We omitted in (14) the bound- 
ary terms associated with Euler characteristics. The in- 
tegration is performed with the condition xu(~(s)) 
=x.(s). 

The most surprising feature of the measure (14) is 
that the functional integrals in it can be explicitly 
evaluated. The cosmological term in (14), which has 
been absent on the classical level, is necessary for re- 
normalizability. The possibility of  performing an x u- 
integration stems from the fact that by the coordinate 
transformation (8) one makes the metric conformally 
euclidean and the resulting integral depends on the 
conformal factor only through the conformal anomaly. 
In such a situation one can use a well-known trick [5] 
in order to find the p (~)-dependence. Namely, one has 
to use the relation 

1 ab 
f D x ( ~ ) e x p ( - ~ f  x /gg  ~aXu~bXu)=exp( -F) ,  

gab6F/6gab =gab(Tab) = (D/24g) [R(~) + const] 

(15) 

(here R is the scalar curvature, and the second equa- 
tion (15) is the well known trace anomaly relation). In- 
serting (15) in the gauge gab(~) = P6ab;R = P -1 ~2 log o 
one obtains 

D f d 2 ~  [~(0 a logo) 2 + , 2 p  l 
F - 487r 

and in arbitrary coordinates: 

F -  D f d 2 ~  d2~,gl /2(~)gl /2(~,)R(~)R(~,  ) 
48~ 

t + XK(~,~ ) constfx/~d2~ (16) 

(here K is a Green's function for the laplacian: 

aa(VtggabOb)K(~,~')=6(~ ~ ' ) ,  

//2 is a quadratically divergent renormalization of the 
cosmological constant). The next step must be the in- 
tegration over gab" In order to do this we have to 
specify a gauge and account for the Faddeev-Popov 
determinant. We would like to use the conformal 
gauge in which our expressions simplify considerably. 
In order to find the measure of integration we use the 
following decomposition of the metric variation: 

6gab(~) = 6~°(~)gab(~) + Vaeb + Vbea (17) 

and substitute it into the expression for the norm in 
the functional space of possible metrics: 

II ~ gab l[ 2 

= fd2~[g(~)]  1/2(gaa'gbb'+ cgabga'b')6gabfga,b, , 

(18) 

where C is an arbitrary constant which will drop out 
of the final answer. The expression (18)is the only 
possible local covariant formula. Substituting (17) into 
(18) we get 

]If gab II 2 = (1 + 2C) f(5~o + VceC) 2 d2~ x/g 

+ f  2 b a  d ~ ~/g-~ba ~bb , (19) 

dPa b = VaC b + VbC a gabVce c . 

From (19)we derive the expression for the integration 
measure in the space of all metrics: 

dIa (ga b) = D~o (~)De a (~) (de t 1 / 2 £ ) ,  (20) 

in which the operator £ is obtained from the last term 
of (19) and given by 

(£e)a = 7b(Vaeb + 7be a -- gab Vcee) . (21) 

It resembles the ordinary vector laplacian but does not 
coincide with it. In two dimensions and in conformally 
euclidean metric g a b  = O6a b eigenvalues of £ are deter- 
mined from the equation 

p-2(~/~Z) (pO~n/3Z) = -Xnt~ n ,z = ~1 + i~2 • (22) 

Since the operator at the left-hand side of (22) is a 
product of two conformally covariant operators. 
det £ is again determined by the conformal anomaly, 
and has the form 

- ½ log det £ =A f [~(Ou~) 2 + u2e •1 d2~, 

~0 = log p .  (23) 

The constant A is most easily determined by matching 
(23) with perturbation theory for small ~0 and is found 
to be equal to 

A = 13/247r. (24) 

Combining (23) and (15) we obtain the partition func- 
tion for the closed surfaces: 
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Z= f D~o(~)exp( -26-D f [½(ilu~°)2+/-~2e~°])( 
48.  ~ 25) 

This expression shows very dearly the origin of the com- 
monly known critical dimension 26 in the string theory: 
at this value of the dimension one could quantize the 
theory without bothering about the conformal anomaly, 
as has been done in dual models.However, for D < 26 
in order to get proper quantization we must examine 
the quantum Liouville theory described by the lagran- 
gian (25). This theory is two-dimensional, renormaliza- 
ble, and completely integrable. All that means that it is 
exactly solvable, just as sine-Gordon theory, and thus 
it must be possible to evaluate explicitly the partition 
function of closed surfaces. This work is in progress 
now and in the present paper I shall only demonstrate 
how to express different physical quantities, like the 
spectrum, scattering amplitudes etc. through the corre- 
lation functions of quantum Liouville theory. The 
basic idea is to sum over surfaces which contain a given 
set of points {x/}. The Fourier transform of such an 
amplitude has poles in g (p/is the momentum of 
point x/) which define the mass spectrum. The residues 
of these poles can be identified with the scattering am- 
plitude. So, we consider the average 

A (Pl... PN) 
= ( ~  f d2~/[g(~/)]l/2exp[ip/x(~/)]) . (26) 

The average in (26)is understood in the sense of (14). 
All functional integrals being gaussian, they are easily 
evaluated with the result 

A(Pl...pN) = fD~0(~)exp( 2 6 - D f 2 ~  d d2~ 

X [~(3utp)2 +/aZe~]) 

X ; e x p ( / ~ .  ~(~ , ) ) / [ I  d2~/• 

The function K(~, ~', ~o) is a Green's function for the 
laplacian in the metric gab = e~fab" If the points ~ and 
~' do not coincide it is just 

K(~, ~ ' )=  - (4 , ) - l log (~  - ~,)2 . (28) 

However, when ~ is close to ~' extra care is needed. We 

have to recall about the cutoff built in our theory. The 
proper definition of K is given by 

K(~, ~') = ~ [Xn(~)Xn(~')/Xnl exp(-EXn) , (29) 
n 

where X n are eigenvalues, Xn are eigenfunctions of the 
laplacian and E is the proper time cut-off. 

Using (29) one shows that 

K(~, ~P)= - ( 4 . ) -  llog(1/E)I+ (4.),-  1~(~) (30) 

and in this way A functions are determined by the 
Liouville correlators. Note that at D = 26 only we ob- 
tain from (27) the standard dual model in the K o b a -  
Nielsen form (see ref. [6] for a review). For physical 
D one has to solve the Liouville theory in order to find 
the scattering amplitudes. 

A few words now about the quantization of the 
Houville theory. The lagrangian possesses the sym- 
metry 

~p(z,f)-+~p(w(z), ff2(z)) +log [dw/dz 12 , (31) 

which is all that remains from the general covariance 
after the specification of the conformal gauge. The 
theory must be quantized in such a way, that this in- 
variance remains untouched. It is possible to prove 
that this is indeed possible and leads to a unique renor- 
malization procedure. 

So, our main conclusion is that the summation of 
random surfaces is reduced to the two-dimensional, 
exactly solvable theory, and that the old "dual" ap- 
proach to the string is correct only at D = 26. 

Extension of these results to the Fermi case and 
their physical applications are discussed in other papers 
[2,71. 

I am grateful to A.A. Migdal and 
A.B. Zamolodchikov for valuable comments and to 
D.G. Makogonenko for the invaluable encouragement 
at the last and most difficult stage of this work. 

References 

[1] A.M. Polyakov, Phys. Lett. 82B (1979) 247. 
[2] V.G. Dotsenko and A.M. Polyakov, to be published. 
[3] A.A. Migdal, Nucl. Phys., to be published 
[4] L. Brink and J. Schwarz, Nucl. Phys. B121 (1977) 285. 
[5] A.S. Schwartz, Commun. Math. Phys. 64 (1979) 233. 
[6] S. Mandelstam, Phys. Rep. 13C (1974) 261. 
[7] A.M. Polyakov, Phys. Lett. 103B (1981) 211. 

210 


