Contents

1	Общий план	1
2	Клетка Брюа в аффинной версии, функции и векторные	
	поля на ней	2
	2.1 Действие $L\mathfrak{sl}_2$	3
3	Алгебра дифференциальных операторов	4
	3.1 Гомоморфзим $L\mathfrak{g} \to Vect(LU)$	5
4	$oldsymbol{A}_{loc}$	6
5	Поднятие отображения	8
6	Доказательство теоремы	9
	6.1 Подсчёт коциклов	9
	6.2 Пример \mathfrak{sl}_2	11
	6.3 Локальный комплекс	13
	6.4 Ограничение на 	14
	6.5 Окончание доказательства	15
7	Модуль Вакимото	15

1 Общий план

Напомним, что наша цель - найти центр аффинной алгебры Ли $\hat{\mathfrak{g}}$. В конечном случае найти центр можно с помощью гомоморфизма Хариш-Чандры:

$$\mathcal{U}(\mathfrak{g}) \to \mathbb{C}[\mathfrak{h}^*]$$

Один из способов найти его, это построить отображение

$$\mathcal{U}(\mathfrak{g}) \to \mathcal{D}(U) \otimes \mathbb{C}[\mathfrak{h}^*]$$

где U - открытая клетка Брюа, $\mathcal{D}(U)$ - дифференциальные операторы на ней. Далее необходимо показать, что образ центра лежит во втором множителе, и найти его.

Этот способ мы попробуем обобщить, а именно мы построим отображение:

$$\hat{\mathfrak{g}}_{\kappa_c} \to \mathcal{D}(U((t))) \otimes \mathbb{C}[\mathfrak{h}^*((t))]$$

где κ_c - критический уровень (минус двойственное число Кокстера). В правой части стоят алгебры Гейзенберга, у них можно взять Фоковские

представления и тензорно перемножить. Получившийся модуль будет называться аффинным модулем Вакимото, и по построению он будет $\hat{\mathfrak{g}}$ -модулем на уровне κ_c . Более того, модуль Вакимото является вертексной алгеброй, и мы можем определить морфизм вертексных алгебр:

$$V_{\kappa_c}(\mathfrak{g}) \to W_{0,\kappa_c}$$

где $V_{\kappa_c}(\mathfrak{g})$ - вакумный модуль. Оказывается, это отображение существует для любого уровня κ .

Построение этих отображений является целью данного доклада, в следующих докладах будет искаться образ центра.

2 Клетка Брюа в аффинной версии, функции и векторные поля на ней

Напомним, что (нетвистованная) аффинная алгебра является центральным расширением алгебры петель:

$$0 \to \mathbb{C}K \to \hat{\mathfrak{g}} \to L\mathfrak{g} \to 0$$

где $L\mathfrak{g}=\mathfrak{g}((t))$ (мы берём пополненную версию аффинной алгебры). Раньше у нас была подалгебра $G_-G_0G_+\subset G$ и мы брали

$$G_+ \simeq G_- G_0 \backslash G_- G_0 G_+ \subset G_- G_0 \backslash G$$

- большая открытая клетка Брюа. Перейдём к алгебре петель, получаем:

$$LG_+ \simeq (LG_-)(LG_0) \setminus (LG_-)(LG_0)(LG_+) \subset (LG_-)(LG_0) \setminus \hat{G}$$

Мы будем обозначать $LU := LG_{+}$.

Рассмотрим пример \mathfrak{sl}_2 . В этом случае $G_+ = \mathbb{A}^1$ - аффинная прямая, $LG_+ = LU = \mathbb{C}((t))$ (про это пространство можно думать как про функции на проколотом диске). Это пространство можно представить как предел:

$$LU = \mathbb{C}((t)) = \lim_{t \to \infty} t^{-N} \mathbb{C}[[t]]$$

Тогда имеется обратный предел на функциях:

$$Fun(LU) = Fun(G_{+}((t))) = \lim_{\leftarrow} Fun(t^{-N}\mathbb{C}[[t]]) = \lim_{\leftarrow} \mathbb{C}[x_n]_{n \ge -N}$$

по отображениям

$$S_{N,M}: \mathbb{C}[x_n]_{n\geq -N} \to \mathbb{C}[x_n]_{n\geq -M}, N>M$$

таким, что $x_n \mapsto 0$ для $-N \leq n < -M$ и $x_n \mapsto x_n$ для $n \geq -M$, где $x_i(t_j) = \delta_{i,j}$.

Явно каждая функция на LU записывается как

$$P_0 + \sum_{n < 0} P_n x_n$$

где P_i - полиномы из $x_m, m \geq i$. Fun(LU) является полным топологическим пространством относительно топологии, в которой базой в окрестности нуля является набор идеалов $(x_N, x_{N-1}, ...)$.

С помощью предела также можно определить векторные поля на LU как предел векторных полей на $t^{-N}G_+[[t]]$. Явно каждое векторное поле записывается следующим образом: для любого M существует N, такой, что

$$\sum_{n\geq N} P_n \frac{\partial}{\partial x_n} + \sum_{m\leq M} x_m \gamma_m$$

 P_n - полиномы, $\gamma_m = \sum_{i=1}^k P'_{m,i} \frac{\partial}{\partial x_{i}}$ - полиномиальные векторные поля.

2.1 Действие $L\mathfrak{sl}_2$

Имеется естественный гомоморфизм $L\mathfrak{g} \to Vect(LU)$. Запишем его явно для $L\mathfrak{sl}_2$, для этого посчитаем действие генераторов на функциях:

$$x_m \in Fun(\mathbb{C}((t)))$$

$$x_m(t^k) = \delta_{m,k}$$

$$exp(-\varepsilon e_n)x_m(t^k) = x_m(exp(\varepsilon e_n)t^k) = x_m(t^k + \delta_{n,k}\varepsilon t^n) = \delta_{m,k}(t^k + \delta_{n,k}\varepsilon t^n)$$

Берём производную по ε в нуле, получаем

$$e_n(x_m) = \delta_{n,m}$$

то есть

$$e_n \mapsto \frac{\partial}{\partial x_n}$$

Аналогично можно посчитать действие h_n, f_n :

$$h_n \mapsto -2\sum_{-i+j=n} x_i \frac{\partial}{\partial x_j}$$

$$f_n \mapsto -\sum_{-i-j+k=n} x_i x_j \frac{\partial}{\partial x_k}$$

3 Алгебра дифференциальных операторов

Далее мы хотим определить алгебру дифференциальных операторов \mathcal{D} на LU. Определим её вначале для \mathfrak{sl}_2 .

Определение. Алгебра Вейля для \mathfrak{sl}_2 \mathcal{A} порождена элементами $a_n, a_n^*, n \in \mathbb{Z}$ с соотношениями

$$[a_n, a_m^*] = \delta_{n+m,0}$$

 $[a_n, a_m] = [a_n^*, a_m^*] = 0$

Предложение 1. Алгебра Вейля действует на Fun(LU):

$$a_n \to \frac{\partial}{\partial x_n}, a_n^* \to x_{-n}$$

Tаким образом, A это алгебра дифференциальных операторов на LU.

Однако в функциях и векторных полях у нас имеются бесконечные суммы, поэтому необходимо взять пополнение алгебры Вейля $\tilde{\mathcal{A}}$ относительно топологии, в которой базой в окрестности нуля является набор идеалов $(a_N, a_{N+1}, ..., a_M^*, a_{M+1}^*, ...)$.

Явно каждый элемент из $\tilde{\mathcal{A}}$ записывается как:

$$\sum_{n\geq N} P_n a_n + \sum_{m\geq M} Q_m a_m^*$$

где $P_n, Q_m \in A$.

На \mathcal{A} можно ввести градуировку по степени вхождения элементов вида a_n . Обозначим за $\tilde{\mathcal{A}}_{\leq 1}$ подпространство, порождённое элементами степени не выше 1 (это не подалгебра, но подалгебра \mathcal{J} и).

Предложение 2. Имеется короткая точная последовательность:

$$0 \to Fun(LU) \to \tilde{\mathcal{A}}_{\leq 1} \to Vect(LU) \to 0$$

такая, что $\tilde{\mathcal{A}}_{\leq 1} o Vect(LU)$ - гомоморфизм алгебр Ли.

 $\mathit{Proof.}$ Любой элемент из $\tilde{\mathcal{A}}_{\leq 1}$ можно представить в виде

$$\sum_{n \ge N} P_n a_n + \sum_{m \ge M} \sum_{k > K_m} Q_{m,k} a_k a_m^* + \sum_{m \ge M} Q_m' a_m^*$$

где $P_n, Q_{m,k} \in Fun(LU), K_m$ - некоторое конечное множество.

Тогда зададим отображение $\tilde{\mathcal{A}}_{\leq 1} \to Vect(LU)$, которое переводит этот элемент в

$$\sum_{n \ge N} P_n a_n + \sum_{m \ge M} \sum_{k \ge K_m} a_m^* Q_{m,k} a_k$$

Этот элемент действительно лежит в Vect(LU).

Замечание. Аналогичным образом вводится алгебра Вейля $\mathcal{A}^{\mathfrak{g}}$ для произвольной полупростой алгебры Ли \mathfrak{g} , образующими являются $a_{\alpha,n}, a_{\alpha,n}^*, n \in \mathbb{Z}, \alpha \in \Delta^+$ (образующие для разных корней коммутируют). Все утверждения, данные выше, верны для любой \mathfrak{g} .

3.1 Гомоморфзим $L\mathfrak{g} \to Vect(LU)$

Опишем гомоморфизм $L\mathfrak{g} \to Vect(LU)$, его легко записать с помощью рядов. Введём обозначения для рядов образующих алгебры Вейля:

$$a(z) = \sum_{n \in \mathbb{Z}} a_n z^{-n-1}$$

$$a^*(z) = \sum_{n \in \mathbb{Z}} a_n^* z^{-n}$$

Запишем

$$e(z) = \sum_{n \in \mathbb{Z}} e_n z^{-n-1}$$

$$h(z) = \sum_{n \in \mathbb{Z}} h_n z^{-n-1}$$

$$f(z) = \sum_{n \in \mathbb{Z}} f_n z^{-n-1}$$

Можно заметить, что формулы для отображений, полученные ранее

$$e_n \mapsto \frac{\partial}{\partial x_n}$$

$$h_n \mapsto -2 \sum_{-i+j=n} x_i \frac{\partial}{\partial x_j}$$

$$f_n \mapsto -\sum_{\substack{-i-j+k=n}} x_i x_j \frac{\partial}{\partial x_k}$$

Эквиваленты формулам

$$e(z) \mapsto a(z)$$

$$h(z) \mapsto -2a^*(z)a(z)$$

$$f(z) \mapsto -a^*(z)^2a(z)$$

То есть мы заменяем $\frac{\partial}{\partial x}$ на a(z), умножение на x заменяем на $a^*(z)$.

Предложение 3. Пусть x_{α} - весовые координаты на U, $x_{\alpha,n}$ - соответствующие координаты на LU. Пусть отображение из \mathfrak{g} в Vect(U) задаётся формулами

$$J^a \mapsto \sum_{\alpha} P_a(x_\beta) \frac{\partial}{\partial x_\alpha}$$

Тогда отображение из $L\mathfrak{g}$ в Vect(LU) задаётся формулами

$$J^{a}(z) \mapsto \sum_{\alpha} P_{a}(a_{\beta}^{*}(z))a_{\alpha}(z)$$

4 Алгебра \mathcal{A}_{loc}

Напомним, что у нас имеется короткая точная последовательность

$$0 \to Fun(LU) \to \tilde{\mathcal{A}}_{\leq 1} \to Vect(LU) \to 0$$

Также у нас есть отображение

$$L\mathfrak{g} \to Vect(LU)$$

Мы хотим поднять его до отображения в $\tilde{\mathcal{A}}_{\leq 1}$. Оказывается, что мы не можем так сделать, однако это отображение можно поднять до отображения

$$\hat{\mathfrak{g}}_{\kappa_c} \to \tilde{\mathcal{A}}_{\leq 1}$$

Для начала мы уменьшим алгебру $\tilde{\mathcal{A}}_{\leq 1}$. В действительности, нам понадобится модуль над ней, из которого мы построим модуль Вакимото, и мы хотим, чтобы $\hat{\mathfrak{g}}_{\kappa_c}$ действовала на нём вертексными операторами.

Запишем подробнее. \mathcal{A} это алгебра Гейзенберга, у неё можно взять Фоковское представление:

Определение. Фоковский модуль M порождается над A элементом $|0\rangle$ c соотношениями:

$$a_{\alpha,n}|0\rangle=0$$
 для $n\geq 0$

$$a_{lpha,n}^*|0
angle=0$$
 для $n>0$

Мы можем продолжить действие до $\tilde{\mathcal{A}}$.

Предложение 4. *М является вертекс операторной алгеброй со следующими свойствами:*

- Имеется \mathbb{Z}_+ -градуировка с $deg(a_{\alpha,n}) = deg(a_{\alpha,n}^*) = -n, \ deg|0\rangle = 0$
- Имеется оператор $T: M \to M$ такой, что $T|0\rangle = 0$, $[T, a_{\alpha,n}] = -n(a_{\alpha,n-1}), \ [T, a_{\alpha,n}^*] = -(n-1)(a_{\alpha,n-1}^*)$
- Имеется семейство вертексных опраторов

$$Y: M \to End(M)[[z, z^{-1}]]$$

таких, что $Y(a_{\alpha,-1},z)=a_{\alpha}(z),\ Y(a_{\alpha,0}^*,z)=a_{\alpha}^*(z)$

$$Y(a_{\alpha_{1},n_{1}}...a_{\alpha_{k},n_{k}}a_{\beta_{1},m_{1}}^{*}...a_{\beta_{l},m_{l}}^{*}|0\rangle,z) = \prod_{i=1}^{k} \prod_{j=1}^{l} \frac{1}{(-n_{i}-1)!} \frac{1}{(-m_{j})!}$$
$$: \partial_{z}^{-n_{1}-1}a_{\alpha_{1}}(z)...\partial_{z}^{-n_{k}-1}a_{\alpha_{k}}(z)\partial_{z}^{-m_{1}}a_{\beta_{1}}^{*}(z)...\partial_{z}^{-m_{l}}a_{\beta_{l}}^{*}(z):$$

Мы хотим, чтобы $\hat{\mathfrak{g}}$ действовала на M вертексными операторами Y. Для этого мы возьмём подалгебру в $\tilde{\mathcal{A}}$, которая действует ими.

Определение.
$$U(M) = (M \otimes \mathbb{C}((t)))/(Im(T \otimes 1 + 1 \otimes \partial_t))$$

Предложение 5. U(M) - алгебра $\mathcal{J}u$, которая действует на M операторами Y(v,t).

Замечание. U(M) не ассоциативная алгебра.

Имеется гомоморфизм алгебр Ли $U(M) \to \tilde{\mathcal{A}}$

$$A \otimes f(z) \mapsto Res_{z=0} Y(A, z) f(z) dz$$

Определение. $\mathcal{A}_{loc} := \tilde{\mathcal{A}} \cap U(M)$

Аналогично можно определить $\mathcal{A}_{\leq 1,loc}$ $\mathcal{A}_{0,loc}$, $\mathcal{A}_{1,loc}$.

Предложение 6. • $\mathcal{A}_{0,loc} = \kappa o = \phi \phi$ ициенты Фурье в рядах $P(a_{\alpha}^*(z), \partial_z a_{\alpha}^*(z), ...)$

- $\mathcal{A}_{\leq 1,loc}=$ коэффициенты Фурье в рядах : $P(a^*_{\alpha}(z),\partial_z a^*_{\alpha}(z),...)a_{\beta}(z)$:
- $\mathcal{A}_{1,loc} = \kappa o \circ \phi \phi$ ициенты Фурье в рядах $P(a_{\alpha}^*(z), \partial_z a_{\alpha}^*(z), ...) a_{\beta}(z)$ У нас имеется отображение векторных пространств

$$\iota: \mathcal{A}_{1,loc} \to \mathcal{A}_{\leq 1,loc}$$

$$P(a_{\alpha}^*(z), \partial_z a_{\alpha}^*(z), ...) a_{\beta}(z) \mapsto : P(a_{\alpha}^*(z), \partial_z a_{\alpha}^*(z), ...) a_{\beta}(z) :$$

которое, однако, не будет гомоморфизмом алгебр Ли.

5 Поднятие отображения

Мы имеем короткую точную последовательность

$$0 \to \mathcal{A}_{0,loc} \to \mathcal{A}_{<1,loc} \to \mathcal{A}_{1,loc} \to 0$$

Также у нас имеется короткая точная последовательность, связанная с расширением алгебры петель:

$$0 \to \mathbb{C}K \to \hat{\mathfrak{g}} \to L\mathfrak{g} \to 0$$

Заметим, что у нас есть отображения

$$\alpha: L\mathfrak{g} \to \mathcal{A}_{1,loc}$$

$$i: \mathbb{C}K \to \mathcal{A}_{0,loc}$$

где второе отображение переводит K в κ_c - критический уровень. Таким образом получаем коммутативную диаграмму, в которой мы хотим дорисовать среднее отображение:

Возникает вопрос, когда это можно сделать. Ответ на него дают вычисления в когомологиях. Для начала научимся сопоставлять каждому расширению элемент в когомологиях.

Предложение 7. Пусть дана короткая точная последовательность алгебр Л u

$$0 \to \mathfrak{a} \to \mathfrak{b} \to \mathfrak{c} \to 0$$

такая, что $\mathfrak a$ абелева и является модулем над $\mathfrak c$, и её расщепление как последовательности векторных пространств $\iota:\mathfrak c\to\mathfrak b$, то есть $\mathfrak b=\iota(\mathfrak c)\oplus\mathfrak a$

Тогда им можно взаимооднозначно сопоставить элемент σ из $H^2(\mathfrak{c},\mathfrak{a})$ по следующему правилу:

$$\sigma:\Lambda^2\mathfrak{c}\to\mathfrak{a}$$

$$\sigma(a,b) = \iota([a,b]) - [\iota(a),\iota(b)]$$

Теперь мы можем сформулировать лемму:

Лемма 1. Пусть даны две точные последовательности:

$$0 \to \mathfrak{a} \to \mathfrak{b} \to \mathfrak{c} \to 0$$
$$0 \to \mathfrak{a}' \to \mathfrak{b}' \to \mathfrak{c}' \to 0$$

когомологические классы которых равны $\omega \in H^2(\mathfrak{c},\mathfrak{a})$ и $\sigma \in H^2(\mathfrak{c}',\mathfrak{a}')$. Пусть также даны отображения $i:\mathfrak{a}' \to \mathfrak{a}$, $\alpha:\mathfrak{c}' \to \mathfrak{c}$ и $\mathfrak{a},\mathfrak{a}'$ - абелевы алгебры Ли, являющиеся модулем над \mathfrak{c} и \mathfrak{c}' .

Пускай $i_*(\sigma) = \alpha^*(\omega)$ в $H^2(\mathfrak{c}',\mathfrak{a})$. Тогда существует среднее отображение β , делающее диаграмму коммутативной:

$$0 \longrightarrow \mathfrak{a} \longrightarrow \mathfrak{b} \longrightarrow \mathfrak{c} \longrightarrow 0$$

$$\downarrow i \qquad \qquad \downarrow \beta \qquad \qquad \downarrow \alpha \qquad \qquad$$

Proof. Так как $i_*(\sigma) = \alpha^*(\omega)$ в $H^2(\mathfrak{c}',\mathfrak{a})$, то $i_*(\sigma) + d\gamma = \alpha^*(\omega)$ для некоторого $\gamma: \mathfrak{c}' \to \mathfrak{a}$ - линейный функционал. Определим отображение $\beta: \mathfrak{b}' \to \mathfrak{b}$ следующим образом:

$$eta(c) = \iota(lpha(c)) + \gamma(c)$$
 для $c \in \mathfrak{c}'$ $eta(a) = i(a)$ для $a \in \mathfrak{a}'$

(так как имеется расщепление $\mathfrak{b}' = \mathfrak{c}' \oplus \mathfrak{a}'$ как векторных пространств). Можно проверить, что из условия $i_*(\sigma) + d\gamma = \alpha^*(\omega)$ следует, что это отображение будет являться гомоморфзимом.

Теорема 1. Пусть ω , σ - классы последовательностей

$$0 \to \mathcal{A}_{0,loc} \to \mathcal{A}_{\leq 1,loc} \to \mathcal{A}_{1,loc} \to 0$$
$$0 \to \mathbb{C}K \to \hat{\mathfrak{g}} \to L\mathfrak{g} \to 0$$

Тогда $i_*(\sigma) = \alpha^*(\omega)$ в $H^2(L\mathfrak{g}, \mathcal{A}_{0,loc})$.

6 Доказательство теоремы

6.1 Подсчёт коциклов

Для начала найдём явную запись коциклов $\alpha^*(\omega)$ и $i_*(\sigma)$:

$$i_*(\sigma)(a_n, b_m) = i([a, b]_{n+m} + K\delta_{n+m,0}(a, b) - [a, b]_{n+m}) = \kappa_c \delta_{n+m,0}(a, b)$$

Теперь найдём значение коцикла ω на (Pa(z),Qa(w)), где P,Q - полиномы от $a^*(z),\partial a^*(z),....$

$$\omega(Pa(z), Qa(z)) =: [Pa(z), Qa(w)] : -[: Pa(z) :, : Qa(w) :]$$

Посчитаем первое слагаемое:

$$[a(z), \partial^n a^*(w)] = \delta^{(n+1)}(z, w)$$

$$[Pa(z),Qa(w)] = \sum_{n=0}^{\infty} P \frac{\partial Q}{\partial (\partial^n a^*(z))} a(w) \delta^{(n+1)}(z,w) - \sum_{n=0}^{\infty} Q \frac{\partial P}{\partial (\partial^n a^*(w))} a(z) \delta^{(n+1)}(z,w)$$

Теперь посчитаем второе слагаемое. Заметим, что : $Pa(z) := Y(Pa_{-1}, z)$. Таким образом, нам нужно найти $Y(Pa_{-1}, z)Y(Qa_{-1}, w)$. Это можно сделать при помощи формулы Уика.

Предположим нам даны два нормально упорядоченных монома g,g' от $a(z), a^*(z)$ и их производных. $(\partial^n a(z), \partial^m a^*(z))$ называется спариванием между g(z) и g'(w), если $\partial^n a(z)$ встречается в $g(z), \partial^m a^*(z)$ встречается в g'(w). Аналогично $(\partial^n a^*(z), \partial^m a(z))$ называется спариванием между g(z) и g'(w), если $\partial^n a^*(z)$ встречается в $g(z), \partial^m a(z)$ встречается в g'(w). Мы сопоставим каждому спариванию функцию

$$(-1)^n \frac{(n+m)!}{(z-w)^{n+m+1}}$$
 или $(-1)^{m+1} \frac{(n+m)!}{(z-w)^{n+m+1}}$

Множественное спаривание B это дизъюнктный набор одиночных спариваний. Каждому B мы сопоставляем функцию $f_B(z,w)$, равную произведению функций соответствующих одиночных спариваний.

Обозначим за $(g(z), g'(w))_B$ произведение всех факторов, не входящих в B. Определим свёртку : g(z), g'(w)) : $_B$ как произведение : $(g(z), g'(w))_B$: $f_B(z, w)$. По определению : g(z), g'(w)) : $_{\varnothing}$ =: g(z), g'(w)) :

Лемма 2 (Формула Уика). g(z)g'(w) равно сумме : g(z), g'(w)) : $_B$ по всем свёрткам с учётом кратности.

Применим формулу Уика для $Y(Pa_{-1},z), Y(Qa_{-1},w)$. Спаривания имеют вид $(a(z), \partial^n a^*(w))$ для каждого a_{-n}^* , входящего в Q, а также $(\partial^n a^*(z), a(w))$ для каждого a_{-n}^* , входящего в P. Таким образом, получаем:

Лемма 3.

$$\begin{split} Y(Pa_{-1},z)Y(Qa_{-1},w) &=: Y(Pa_{-1},z)Y(Qa_{-1},w): + \\ &+ \sum_{n \geq 0} \frac{1}{(z-w)^{n+1}}: Y(P,z)Y(\frac{\partial Q}{\partial a_{-n}^*}a_{-1},w): - \\ &- \sum_{n \geq 0} \frac{1}{(z-w)^{n+1}}: Y(\frac{\partial P}{\partial a_{-n}^*}a_{-1},z)Y(P,w): + \\ &+ \sum_{n \geq 0} \frac{1}{(z-w)^{n+m+2}}Y(\frac{\partial P}{\partial a_{-n}^*},z)Y(\frac{\partial Q}{\partial a_{-n}^*},w) \end{split}$$

Следствие.

$$[Y(Pa_{-1}, z), Y(Qa_{-1}, w)] = \sum_{n \ge 0} \delta^{(n+1)}(z, w) : Y(P, z)Y(\frac{\partial Q}{\partial a_{-n}^*} a_{-1}, w) : -$$

$$- \sum_{n \ge 0} \delta^{(n+1)}(z, w) : Y(\frac{\partial P}{\partial a_{-n}^*} a_{-1}, z)Y(P, w) : +$$

$$+ \sum_{n, m \ge 0} \delta^{(n+m+1)}(z, w)Y(\frac{\partial P}{\partial a_{-n}^*}, z)Y(\frac{\partial Q}{\partial a_{-n}^*}, w)$$

Теперь сложим две части в формуле для $\omega(Pa(z),Qa(z))$, у нас останется только последнее слагаемое, то есть

Предложение 8.

$$\omega(Pa(z),Qa(z)) = \sum_{n,m \geq 0} \delta^{(n+m+1)}(z,w) Y(\frac{\partial P}{\partial a_{-m}^*},z) Y(\frac{\partial Q}{\partial a_{-n}^*},w)$$

Следствие.

$$\omega(Pa(z)_{[k]}, Qa(z)_{[s]}) = \sum_{n,m>0} Res_{w=0} \frac{1}{(n+m+1)!} \partial_z^{n+m+1} Y(\frac{\partial P}{\partial a_{-n}^*}, z) Y(\frac{\partial Q}{\partial a_{-m}^*}, w) z^k w^s|_{z=w} dw$$

6.2 Пример \mathfrak{sl}_2

Напомним формулы для отображения $L\mathfrak{sl}_2 \to Vect(LU)$:

$$e(z) \mapsto a(z)$$
$$h(z) \mapsto -2a^*(z)a(z)$$
$$f(z) \mapsto -a^*(z)^2a(z)$$

Таким образом, полиномы для e(z), f(z), h(z) это $P_e = 1, P_h = -2a_0^*$ и $P_f = (a_0^*)^2$. Найдём значение коциклов по формуле из следствия:

- $\alpha^*\omega(e_k,e_s)=\alpha^*\omega(e_k,h_s)=\alpha^*\omega(e_k,f_s)=0$, так как P_e не зависит от $a_{-n}^*.$
- $\alpha^* \omega(h_k, h_s) = Res_{w=0} \partial_z(-2)(-2)z^k w^s|_{z=w} dw = 4Res_{z=0} z^{k+s-1} dz = 4k \delta_{k+s}$
- $\alpha^* \omega(h_k, f_s) = Res_{w=0} \partial_z(-2) Y(-2a_0^*, w) z^k w^s|_{z=w} dw = 4k Res_{z=0} a^*(z) z^{k+s-1} dz = 4k a_{k+s}^*$
- $\alpha^* \omega(f_k, f_s) = Res_{w=0} \partial_z Y(-2a_0^*, z) Y(-2a_0^*, w) z^k w^s|_{z=w} dw = 4k Res_{z=0} \sum_{n,m} a_n^* a_m^* z^{k+s-n-m-1} dz = 4k \sum_l a_l^* a_{k+s-l}^*$

Мы хотим найти γ такой, что $i_*(\sigma) + d\gamma = \alpha^*(\omega)$. Введём градуировку на $C^{\bullet}(L\mathfrak{g}, \mathcal{A}_{0,loc})$:

$$wt(a_n^*) = wt(e)$$
$$wt(J_n^a) = wt(J^a)$$

Заметим, что $\alpha^*(\omega)$ и $i_*(\sigma)$ однородны степени 0 относительно этой градуировки, значит нам нужно искать γ так, чтобы он был однородным степени 0. Тогда

$$\gamma(e(z)) = \gamma(h(z)) = 0$$

так как иначе вес будет положительным. Более того,

$$\gamma(f(z)) = \lambda \partial a^*(z)$$

Найдём $d\gamma$:

$$d\gamma(e_k, e_s) = d\gamma(e_k, h_s) = d\gamma(h_k, h_s) = 0$$

$$d\gamma(e_k, f_s) = e_k \gamma(f_s) - f_s \gamma(e_k) + \gamma([e_k, f_s]) = \lambda s a_k(a_{-s}^*) = \lambda s \delta_{k+s,0}$$

$$d\gamma(h_k, f_s) = h_k \gamma(f_s) - f_s \gamma(h_k) + \gamma([h_k, f_s]) = (-2 \sum_l a_l^* a_{k-l})(\lambda s a_s^*) - 2\lambda(k+s) a_{k+s}^* = -2\lambda k a_{k+s}^*$$

$$d\gamma(f_k, f_s) = f_k \gamma(f_s) - f_s \gamma(f_k) + \gamma([f_k, f_s]) = -\sum_{l,t} a_l^* a_t^* a_{k-l-t} (\lambda s a_s^*) + \sum_{l,t} a_l^* a_t^* a_{s-l-t} (\lambda k a_k^*) = -2\lambda k \sum_l a_l^* a_{k+s-l}^*$$

Таким образом, получаем, что $i_*(\sigma) + d\gamma = \alpha^*(\omega)$ при $\lambda = -2$.

Следствие. Существует отображение

$$\begin{split} \mathfrak{sl}_{2\kappa_c} &\to \mathcal{A}_{\leq 1,loc} \\ & e(z) \mapsto a(z) \\ & h(z) \mapsto -2 : a^*(z)a(z) : \\ f(z) \mapsto -: a^*(z)^2 a(z) : -2\partial a^*(z) \end{split}$$

Таким образом, M является $\hat{\mathfrak{sl}}_2$ -модулем. Это представление называется модулем Вакимото.

6.3 Локальный комплекс

Основная идея доказательства заключается в следующем: нужно показать, что если два коцикла совпадают при ограничении с $\Lambda^2\mathfrak{g}$ на $\Lambda^2\mathfrak{h}$ то они лежат в одном классе когомологий.

Определим вспомогательную алгебру Клиффорда:

Определение. Алгебра Клиффорда порождается элементами $\psi_{a,n}, \psi_{a,n}^*, a = 1, ..., dim \mathfrak{g}$ с соотношениями:

$$[\psi_{a,n}, \psi_{b,m}^*]_+ = \psi_{a,n}\psi_{b,m}^* + \psi_{b,m}^*\psi_{a,n} = \delta_{n+m,0}\delta_{a,b}$$
$$[\psi_{a,n}, \psi_{b,m}]_+ = [\psi_{a,n}^*, \psi_{b,m}^*]_+ = 0$$

Обозначим за Λ модуль, порождённый вектором $|0\rangle$ с соотношениями

$$\psi_{a,n}|0\rangle = 0$$
 для $n > 0$
 $\psi_{a,n}^*|0\rangle = 0$ для $n \ge 0$

 Λ является вертекс операторной супералгеброй со свойствами, аналогичными модулю M.

Определим линейный функционал из $C^i(L\mathfrak{g}, \mathcal{A}_{0,loc}) = Hom(\Lambda^i(L\mathfrak{g}), \mathcal{A}_{0,loc})$

$$\psi_{a_1,-n_1}...\psi_{a_i,-n_i}f = (J_{n_1}^{a_1} \wedge ... \wedge J_{n_i}^{a_i})^*f$$

где $f \in \mathcal{A}_{0,loc}$. Любой функционал можно записать в виде суммы таких функционалов.

Заметим, что выражения

$$\int Y(\psi_{a_1,n_1}...\psi_{a_i,n_i}a_{\alpha_1,m_1}^*...a_{\alpha_j,m_j}^*,z)dz$$

определяют линейный функционал из $C^i(L\mathfrak{g}, \mathcal{A}_{0,loc})$

Предложение 9. Все такие отображения образуют подкомплекс, который обозначается $C^{\bullet}_{loc}(L\mathfrak{g}, \mathcal{A}_{0,loc})$

Предложение 10. $i_*(\sigma)$ и $\alpha^*(\omega)$ лежат в $C^{\bullet}_{loc}(L\mathfrak{g}, \mathcal{A}_{0,loc})$.

6.4 Ограничение на ђ

Далее мы хотим ввести второй вспомогательный комплекс. Обозначим за $L_+\mathfrak{g}=\mathfrak{g}[[t]]$ - алгебра токов. $L_+\mathfrak{g}$ действует на пространстве

$$M_+ := \mathbb{C}[a_{\alpha,n}^*]_{\alpha \in \Delta_+, n \le 0}$$

которое является пространством функций на $L_+U=U[[t]].$

Отождествляем комплекс Шевалле $C^{\bullet}(L_{+}\mathfrak{g}, M_{+})$ с суперпространством

$$M_+ \otimes \Lambda(\psi_{a,n}^*)_{n \leq 0}$$

Введём супердифференцирование на нём:

$$Ta_{\alpha,n}^* = -(n-1)a_{\alpha,n-1}^*, T\psi_{a,n}^* = -(n-1)\psi_{a,n-1}^*$$

Определим отображение

$$\int: C^{\bullet}(L_{+}\mathfrak{g}, M_{+}) \to C^{\bullet}_{loc}(L\mathfrak{g}, \mathcal{A}_{0, loc})$$

$$A \mapsto \int Y(A, z) dz$$

Предложение 11. \int определяет изоморфизм

$$C_{loc}^{\bullet}(L\mathfrak{g},\mathcal{A}_{0,loc}) \simeq C^{\bullet}(L_{+}\mathfrak{g},M_{+})/(ImT+\mathbb{C})$$

Далее мы можем свести когомологии $L_+\mathfrak{g}$ к когомологиям $L_+\mathfrak{h}$ с тривиальными коэффициентами:

Предложение 12.

$$H^{\bullet}(L_{+}\mathfrak{g}, M_{+}) = H^{\bullet}(L_{+}\mathfrak{b}_{-}, \mathbb{C}) = H^{\bullet}(L_{+}\mathfrak{h}, \mathbb{C})$$

Первое равенство следует из того, что модуль M_+ коиндуцированный, второе из подсчёта спектральной последовательности.

Таким образом, мы получаем равенство

$$H_{loc}^{\bullet}(L\mathfrak{g},\mathcal{A}_{0,loc})=H^{\bullet}(L_{+}\mathfrak{h},\mathbb{C})/(ImT+\mathbb{C})$$

Наконец, мы можем сформулировать утверждение

Лемма 4. Если два коцикла из $C^{\bullet}_{loc}(L\mathfrak{g}, \mathcal{A}_{0,loc})$ совпадают при ограничении на $L\mathfrak{h}$, то они лежат в одном классе когомологий.

6.5 Окончание доказательства

Таким образом, нам надо проверить, что $i_*\sigma$ и $\alpha^*\omega$ совпадают на $L\mathfrak{h}$:

Предложение 13. $i_*\sigma(h_n,h'_m) = \alpha^*\omega(h_n,h'_m)$

В результате мы получили отображение $\hat{\mathfrak{g}}_{\kappa_c} \to \mathcal{A}_{\leq 1,loc}$, которое записывается как $J^a(z)\mapsto:\alpha(J^a(z)):+\gamma(J^a(z))$, где $\alpha(J^a(z))$ - векторное поле, соответствующее $J^a(z)$. Более того, используя аналогичные соображения как в случае \mathfrak{sl}_2 получаем, что $\gamma(e_i(z))=\gamma(h_i(z))=0,\,\gamma(f_i(z))=c_i\partial a_{\alpha_i}^*(z)$, где c_i - какието константы. В итоге, мы доказали теорему:

Теорема 2. Существует гомоморфизм алгебр Ли:

$$\hat{\mathfrak{g}}_{\kappa_c} \to \mathcal{A}_{\leq 1,loc}$$

$$e_i(z) \to : \alpha(e_i(z)) :$$

$$h_i(z) \to : \alpha(h_i(z)) :$$

$$f_i(z) \to : \alpha(f_i(z)) : +c_i \partial a_{\alpha_i}^*(z)$$

где $\alpha(J^a(z))$ - векторное поле, соответствующее $J^a(z)$, c_i - некоторые константы.

7 Модуль Вакимото

Мы получили структуру $\hat{\mathfrak{g}}$ -модуля на Фоковском модуле M

Определение. M c действием $\hat{\mathfrak{g}}$ называется модулем Вакимото на критическом уровне веса 0.

Более того, мы можем определить морфзим $V_{\kappa_c}(\mathfrak{g}) \to M$.

Лемма 5. Определение гомоморфизма вертексных алгебр $V_{\kappa_c}(\mathfrak{g}) \to V$ эквивалентно выбору векторов $\tilde{J}_n^a|0\rangle_v \in V$ степени 1 таких, что коэффициенты Фурье \tilde{J}_n^a вертексных операторов $Y(\tilde{J}_n^a|0\rangle_v,z) = \sum_n \tilde{J}_n^a z^{-n-1}$ удовлетворяют соотношениям аффинной алгебры.

Следствие. Существует гомоморфзим $V_{\kappa_c}(\mathfrak{g}) \to M$ определённый формулами, данными в теореме 2.

Заметим, что мы можем выбрать γ с точностью до элемента из $H^1(L\mathfrak{g},\mathcal{A}_{0,loc})$.

Предложение 14. $H^1(L\mathfrak{g}, \mathcal{A}_{0,loc})$ изоморфно пространству $(L\mathfrak{h})^*$.

Пример. Проимнострируем это предложение на примере \mathfrak{sl}_2 . Пусть дано $\chi(t) = \sum_n \chi_n t^{-n-1} \in \mathfrak{h}((t))$. Хотим построить $\phi \in H^1(L\mathfrak{sl}_2, \mathcal{A}_{0,loc})$, соответствующий χ , то есть такой, чтобы

$$\phi(h(z)) = \chi(t)$$

По аналогичным соображениям веса $\phi(e(z))$ должно быть равно 0. Найдём $\phi(f(z))$:

$$\phi([e_n, f_m]) = e_n \phi(f_m) - f_m \phi(e_n)$$
$$e_n \phi(f_m) = \chi_{n+m}$$

Следовательно, получаем формулу для $\phi(f(z))$:

$$\phi(f(z)) = \chi(z)a^*(z)$$

Предложение 15. $d\phi = 0$, где ϕ определено формулами выше.

Proof.

$$d\phi(e_n,e_m)=0$$

$$d\phi(e_n,h_m)=e_n\phi(h_m)=0$$

$$d\phi(e_n,f_m)=e_n\phi(f_m)+\phi(h_{n+m})=a_n(\sum_k\chi_ka_{m-k}^*)+\chi_{n+m}=0$$

$$d\phi(h_n,h_m)=h_n(\chi_m)-h_m(\chi_n)=0$$

$$d\phi(h_n,f_m)=h_n(\sum_k\chi_ka_{m-k}^*)-f_m(\chi_n)-2(\sum_k\chi_ka_{m+n-k}^*)=$$

$$=-2(\sum_k\chi_ka_{m+n-k}^*)+2(\sum_k\chi_ka_{m+n-k}^*)=0$$

$$d\phi(f_n,f_m)$$
 - упражнение

Таким образом, получаем утверждение:

Предложение 16. Для любого $\chi(t) \in \mathfrak{h}((t))$ существует отображение

$$\hat{\mathfrak{sl}}_{2\kappa_c} o \mathcal{A}_{\leq 1,loc}$$

определённое по формулам:

$$\begin{split} e(z) \to &: \alpha(e(z)) : \\ h(z) \to &: \alpha(h(z)) : + \chi(z) \\ f(z) \to &: \alpha(f(z)) : -2\partial a^*(z) + \chi(z)a^*(z) \end{split}$$

Это отображение определяет структуру $\mathfrak{sl}_{2\kappa_c}$ -модуля на M.

Для общего \mathfrak{g} формулы будут аналогичными.

Мы можем смотреть на $\chi(t)$ не как на фиксированные параметры, а как на переменные. Введём коммутативную алгебру Гейзенберга

Определение. $Heis_0$ - коммутативная алгебра c образующими $b_{i,n}, i=1,...,rk(\mathfrak{g}), n\in\mathbb{Z}$

У неё имеется естественное Фоковское предстваление $\mathbb{C}[b_{i,n}]_{n<0}$, являющееся вертексной алгеброй, обозначим его π_0 . Тогда получаем теорему

Теорема 3. Существует отображение

$$\hat{\mathfrak{g}}_{\kappa_c} \to \mathcal{A}_{<1,loc} \otimes Heis_0$$

с формулами

$$e_i(z) \rightarrow: \alpha(e_i(z)):$$

$$h_i(z) \rightarrow: \alpha(h_i(z)): +\chi_i(z)$$

$$f_i(z) \rightarrow: \alpha(f_i(z)): +c_i\partial a_{\alpha_i}^*(z) + \chi_i(z)a_{\alpha_i}^*(z)$$

Это отображение определяет структуру $\hat{\mathfrak{g}}$ -модуля на $M \otimes \pi_0$, более того существует отображение вертексных алгебр

$$V_{\kappa_c}(\mathfrak{g}) \to M \otimes \pi_0$$

Определение. $M \otimes \pi_0$ называется модулем Вакимото на критическом уровне и обозначается W_{0,κ_c} .

Модули Вакимото можно определить для произвольного уровня κ . В этом случае вместо коммутативной алгебры Гейзенберга нам нужно взять $Heis_{\kappa-\kappa_c}$:

Определение. $Heis_{\kappa-\kappa_c}$ - алгебра с образующими $b_{i,n}, i=1,...,rk(\mathfrak{g}), n\in\mathbb{Z}$ и соотношениями

$$[b_{i,n}, b_{j,m}] = n(\kappa - \kappa_c)(h_i, h_j)\delta_{n,-m}$$

Соответствующий Фоковский модуль обозначается $\pi_0^{\kappa-\kappa_c}$.

Теорема 4. Существует отображение

$$\hat{\mathfrak{g}}_{\kappa} \to \mathcal{A}_{\leq 1,loc} \otimes Heis_{\kappa-\kappa_c}$$

с формулами

$$e_i(z) \rightarrow : \alpha(e_i(z)) :$$

$$h_i(z) \to : \alpha(h_i(z)) : +\chi_i(z)$$

$$f_i(z) \to : \alpha(f_i(z)) : +(c_i + (\kappa - \kappa_c)(e_i, f_i)) \partial a_{\alpha_i}^*(z) + \chi_i(z) a_{\alpha_i}^*(z)$$

Это отображение определяет структуру $\hat{\mathfrak{g}}$ -модуля на $M \otimes \pi_0^{\kappa-\kappa_c}$, более того существует отображение вертексных алгебр

$$V_{\kappa}(\mathfrak{g}) \to M \otimes \pi_0^{\kappa - \kappa_c}$$

Также вместо Фоковского модуля веса 0 $\pi_0^{\kappa-\kappa_c}$ мы можем взять модуль со старшим весом λ , то есть такой, что $b_{i,0}|0\rangle=\lambda(h_i)|0\rangle$. Он обозначается $\pi_\lambda^{\kappa-\kappa_c}$.

Предложение 17. $M\otimes\pi^{\kappa-\kappa_c}_{\lambda}$ является $\hat{\mathfrak{g}}$ -модулем на уровне $\kappa.$

Определение. $M\otimes\pi_{\lambda}^{\kappa-\kappa_c}$ называется модулем Вакимото на уровне κ веса λ и обозначается $W_{\lambda,\kappa}$.