Introduction to quantum groups

30.12.2020

Problems for the course Skoltech, fall 2020. There are mistakes here, if you find some please write to mbersht@gmail.com

Definitions and hints are in slides and references.

1 Poisson algebras and quantization

Problem 1.1. Show that Moyal formula defines associative product.

Problem 1.2 (*). Find an example of the Poisson algebra which cannot be quantized.

Problem 1.3 (*). Show that $HH^2(U(\mathfrak{g})) = 0$ for semisimple Lie algeba \mathfrak{g} .

Problem 1.4. Show that distribution T^{Π} is integrable.

2 Poisson-Lie groups and Lie bialgebras

Problem 2.1. Let G is Poisspn-Lie group, $H \subset G$ in Poisson-Lie subgroup. Show that $C^{\infty}(G)^{H}$ is Posson subalgebra.

Problem 2.2. Let G = GL(2), Poisson-Lie structure defined by r matrix with $r = \frac{1}{4}h \otimes h + e \otimes f$, $L = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Find brackets of a, b, c, d. Check skew-commutativity. Check Poisson-Lie property.

Problem 2.3. For any finite dimensional Lie algebra \mathfrak{g} there exists bijection between bialgebra structures on \mathfrak{g} and Manin triples with $\mathfrak{q}_+ \simeq \mathfrak{g}$.

Problem 2.4. Find Lie bialgebra structure (i.e. δ) for Examples 1 and 4 and $\mathfrak{g} = \mathfrak{sl}_2$.

3 Dual Poisson-Lie groups, symplectic leaves

Problem 3.1. Let $\mathfrak{q} = \mathfrak{sl}_2(\mathbb{C})$ as real Lie algebra with scalar product $(x, y) = \operatorname{Im} \operatorname{Tr}(xy)$ and subalgebras $\mathfrak{q}_+ = \mathfrak{su}_2$, $\mathfrak{q}_- = \{ \begin{pmatrix} a & b+ic \\ 0 & -a \end{pmatrix} | a, b, c \in \mathbb{R} \}.$

a) Show that q, q_+, q_- is Manin triple. Find bialgebra structure on \mathfrak{su}_2 .

- b) Show that $D(G) = G \times G^*$
- c) Find symplectic leaves on SU(2).

4 Classical *r*-matrices

Let $\delta_r(a) = \operatorname{ad}_a r$.

Problem 4.1. Show that δ_r maps to $\Lambda^2 \mathfrak{g}$ if and only if $r_{12} + r_{21} \in (\mathfrak{g} \otimes \mathfrak{g})^{\mathfrak{g}}$.

Problem 4.2. Let $r = r^S + r^A$, where $r^S = \alpha \Omega$, $r^A \in \Lambda^2 \mathfrak{g}$. Show that a) $\delta_r = \delta_{r^A}$. b) $[[r,r]] = [[r^A, r^A]] + \alpha^2 c$.

Problem 4.3. For standard bialgebra structure for simple \mathfrak{g}

- a) Find $\delta(h_i)$, $\delta(e_{\alpha})$, $\delta(e_{-\alpha})$, where α is simple.
- b) Find Lie algebra \mathfrak{g}^* .
- c) Show that $r = \sum h_i \otimes h^i + 2 \sum_{\alpha \in \Delta_+} e_\alpha \otimes e_{-\alpha}$ defines the same δ and satisfies CYBE.

Problem 4.4 (*). Let $r \in \Lambda^2 \mathfrak{g}$ satisfy MCYBE. Show that $\Pi = (\lambda_g)_* r - (\rho_g)_* r$ is Poisson bractet.

5 Quantum group and algebras. Example of \mathfrak{sl}_2

Problem 5.1 (*). Let $U_{\hbar}(\mathfrak{g})$ is quantization of universal enveloping $U(\mathfrak{g})$. Let $\delta(a) = \frac{\Delta(a) - \Delta^{op}(a)}{\hbar} \mod \hbar$. Show that δ satisfies cocycle and coJacobi conditions.

Problem 5.2. Let $g(\hbar) = 1 + O(\hbar) \in U(\mathfrak{h})[[\hbar]]$ is group like element (i.e. $\Delta(g) = g \times g$), then $g(\hbar) = \exp(\alpha H \hbar)$, for $\alpha \in \mathbb{C}[[\hbar]]$.

Problem 5.3. Show that relation $[E, F] = \frac{e^{\hbar H} - e^{-\hbar H}}{e^{\hbar} - e^{-\hbar}}$ agrees with coproduct Δ .

Problem 5.4. Show that exists homomorphism $U_{\hbar}(\mathfrak{sl}_2) \to U(\mathfrak{sl}_2)[[\hbar]]$ such that $E \mapsto e$, $H \mapsto h$, and $F \mapsto \Phi(c, h)f$, where $c \in U(\mathfrak{sl}_2)$ is Casimir.

6 Hopf algebras

Problem 6.1. Show that S is antihomomorphism of algebra and coalgebra.

Problem 6.2. a) Find formulas for action of E, H, F in basis v_m . b) Define basis \tilde{v}_m .

Problem 6.3. a) Show existence of natural morphisms $V^* \otimes V \to \mathbb{C}$ and $\mathbb{C} \to V \otimes V^*$. b) Show that $(V \otimes W)^* = W^* \otimes V^*$. **Problem 6.4** (*). a) Show directly that $L_1 \otimes L_l \simeq L_{l+1} \oplus L_{l-1}$, for $l \ge 1$. b) Show that $L_{l_1} \otimes L_{l_2} = \oplus L_l$, where summation region $|l_1 - l_2| \le l \le l_1 + l_2$ and $l + l_1 + l_2$ is even.

7 Quantum *R*-matrices

Problem 7.1. For $U_{\hbar}(\mathfrak{sl}_2)$ show that $\Delta^{op}(E)R = R\Delta(E)$.

Problem 7.2. a) Show that $C_{\hbar} = FE + \frac{e^{\hbar(H+1)} + e^{-\hbar(H+1)}}{(e^{\hbar} - e^{-\hbar})^2}$ is central. b) Find action of C_{\hbar} and $e^{-\hbar H}u$ on L_m . c) Let $\Phi_{\hbar}^{-1}: U(\mathfrak{sl}_2)[[\hbar]] \to U_{\hbar}(\mathfrak{sl}_2)$ isomorphism. Let c = fe + h(h+2)/4. Find $\Phi_{\hbar}^{-1}(c)$. $\Phi_{\hbar}^{-1}(e^{\hbar c})$, relate to central elements above.

8 Drinfeld-Jimbo quantum groups

Problem 8.1. Show that $[F_i, q$ -Serre $E_i] = 0$ follows from quadratic relations.

Problem 8.2. Find $H \in \mathfrak{h}$ such that $S^2(x) = e^{\hbar H} x e^{-\hbar H}$

Problem 8.3. Using the Fact show nondegeneracy of the pairing $U_{\hbar}(\mathfrak{b}^+) \otimes U_{\hbar}(\mathfrak{b}^-) \to \mathbb{C}$.

9 RTT realiztion

Problem 9.1. a) Deduce quadratic relations on E, F, H from RTT relations. b)* Deduce Serre relations from RTT relations.

Problem 9.2. Prove that U(R) is generated by $l_{ii}^+, l_{ii+1}^+, l_{ii}^-, l_{ii-1}^-$.

Problem 9.3. Find formulas for $L^+ = (\rho \otimes id)\mathfrak{R}$ and $L^- = (id \otimes \rho)\mathfrak{R}^{-1}$ for $U_q(\mathfrak{sl}_2)$.

10 Functions on quantum group SL_2

Problem 10.1. Show that qdet is central and group-like.

Problem 10.2. Show that $L_l \otimes L_l^*$ are linearly independend in $U_q(\mathfrak{sl}_2)^\circ$ for $l \ge 0$.

Problem 10.3 (*). Let $U_{\hbar}(\mathfrak{g})$ be quantum universal enveloping algebra. Let $A = \{x \in U_{\hbar}(\mathfrak{g}) | (id - \epsilon)\Delta_n(x) \in U_{\hbar}(\mathfrak{g})^{\otimes n}, \forall n\}$. Show that A is a Hopf algebra, cocommutative up to first order in \hbar .

Problem 10.4 (*). For $\mathfrak{g} = \mathfrak{sl}_2$ define $U_{\hbar}(\mathfrak{g}^*)$ for standard bialgebra structure.

11 Functions on quantum group SL_n

Problem 11.1 (*). For given $J = \{j_1 < \ldots J_{r-1}\}, I = \{i_1, \ldots, i_r\}, K = \{k_0, \ldots, k_r\}$ show relation

$$\sum_{s=0}^{j} \operatorname{sgn}(J, k_s) (-q)^{-s} t_{j_1 \dots k_s, \dots, j_{r-1}}^{i_1 \dots i_r} t_{k_0, \dots, \hat{k_s} \dots, k_r}^{i_1 \dots i_r} = 0$$

Problem 11.2 (*). Show that center of $\mathbb{C}[SL_n]_q$ is generated by qdet.

 $\begin{array}{l} \textbf{Problem 11.3 (*). } a) \ t^{\Lambda}_{-w_0(\Lambda),\Lambda} t^{\Lambda'}_{-\mu,\lambda} = q^{(\Lambda,\lambda) - (w_0(\Lambda,\mu))} t^{\Lambda'}_{-\mu,\lambda} t^{\Lambda}_{-w_0(\Lambda),\Lambda}. \\ b) \ t^{\Lambda}_{-\Lambda,w_0(\Lambda)} t^{\Lambda'}_{-\mu,\lambda} = q^{(\Lambda,\mu) - (w_0(\Lambda),\lambda)} t^{\Lambda'}_{-\mu,\lambda} t^{\Lambda}_{-\Lambda,w_0(\Lambda)}. \\ c) \ Elements \ t^{\Lambda}_{-w_0(\Lambda),\Lambda}, \ t^{\Lambda'}_{-\Lambda',w_0(\Lambda')} \ form \ commutative \ subalgebra. \end{array}$

Problem 11.4 (*). d) Subalgrebra A_+ is generated by $t_{i_1...i_k}^{1...k}$. Subalgebra A_- is generated by $t_{i_1...i_k}^{n-k+1...n}$.

e) Commutative subalgebra from c) above is generated by $t_{n-k+1,...n}^{1...k}$, $t_{1,...k}^{n-k+1,...n}$.

12 Lusztig's braid group

Problem 12.1. Check that $[T_i(E_j), T_i(F_j)] = T_i([E_j, F_j])$ for $a_{ij} = -1$.

Problem 12.2. For $U_q(\mathfrak{g})^{coop}$ find $S(E_i)$. Show that $\mathrm{ad}_{\Delta^{op}, E_i} = \mathrm{ad}_{q, E_i}$.

Problem 12.3. Fix reduced expression of $w_0 = s_{i_1} \cdots w_{i_N}$.

a) If $a_{i_k,i_{k+1}} = 0$ then reversing $i_k, i_k + 1$ we get reduced expression $\vec{i'}$ with the same (but reordered) set of Cartan-Weyl elements.

b) If $i_k = i_{k+2}$, $a_{i_k,i_{k+1}} = a_{i_{k+1},i_{k+2}} = -1$ then $\beta_{k+1} = \beta_k + \beta_{k+2}$, $E_{\beta_{k+1}} = -[E_{\beta_k}, E_{\beta_{k+2}}]_{q^{-1}}$. Replacing $i_k, i_{k+1}, i_k \to i_{k+1} i_k i_{k+1}$ we get reducted expression $\vec{i'}$ and the set of Cartan-Weyl elements $\{E'_{\beta}\}$ differs from $\{E'_{\beta}\}$ only by $E'_{\beta_{k+1}}$ and $E_{\beta_{k+1}}$. c) If $\beta_k = \alpha_i$ then $E_{\beta_k} = E_i$.

Problem 12.4. Relate l_{ij}^- generators in RTT realization and Cartan-Weyl elements.

13 Factorization of the universal *R* matrix

Problem 13.1 (*). a) For $v \in L_l[m]$ show that $E^{(a)}F^{(b)}v = \sum_{t\geq 0} F^{(b-t)}E^{(a-t)} {m-b+a \choose t}_q$. b) Let $v_l \in L_l$ be highest weight vector. Let $\tilde{v}_m = F^{(\frac{l-m}{2})}v_l \in L_l[m]$. Show that

$$t\tilde{v}_m = (-1)^{\frac{l-m}{2}} q^{-\frac{l-m}{2}\frac{l+m+2}{2}} \tilde{v}_{-m}$$

c) Show that tFv = -EKtv, $tKv = K^{-1}tv$, $tEv = -k^{-1}Ftv$.

Problem 13.2 (*). Let $\bar{\mathfrak{R}} = \sum_{n\geq 0} q^{\binom{n}{2}} \frac{(q-1/q)^n}{[n]_q!} E^n \otimes F^n$. Show that $\bar{\mathfrak{R}}^{-1} = \sum_{n\geq 0} (-1)^n q^{-\binom{n}{2}} \frac{(q-1/q)^n}{[n]_q!} E^n \otimes F^n$

Problem 13.3 (*). Show that $\Delta(t) = \overline{\mathfrak{R}}^{-1}t \otimes t$

Problem 13.4 (*). Show that $e^{-\hbar H^2/2}t^2$ is central. Relate it to central elements from Lecture 7.

Problem 13.5 (*). For $\mathfrak{g} = \mathfrak{sl}_n$ compute $\rho_{\mathbb{C}^n} \otimes \rho_{\mathbb{C}^n}(\mathfrak{R})$.

14 Drinfeld double

Problem 14.1 (*). Show that relations $\langle a_{(1)}, b_{(1)} \rangle a_{(2)} * b_{(2)} = b_{(1)} * a_{(1)} \langle a_{(2)}, b_{(2)} \rangle$ is equivalent to $b * a = \langle a_{(1)}, b_{(1)} \rangle a_{(2)} * b_{(2)} \langle a_{(3)}, S^{-1}(b_{(3)}) \rangle$

Problem 14.2 (*). For $A = \mathbb{C}[G]$, G finite group, find D(A). Describe representations of D(A).

Problem 14.3 (*). Show that $\langle RL_1^+L_2^+ - L_2^+L_1^+R, - \rangle = 0.$

Problem 14.4 (*). For $\mathfrak{g} = \mathfrak{sl}_2$ and $V = \mathbb{C}^2$ compute C_V .